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1.   Abstract 
Geostatistical tools inherently assume stationarity, that is, statistical homogeneity in the 
mean and other statistical parameters.  Reservoirs often have significant nonstationary 
features, such as trends in the mean.  Methodologies for trend model construction and 
geostatistical simulation are described that honor trends within hierarchies of nested 
architectural elements and property constraints.  These procedures are demonstrated with 
a synthetic deepwater reservoir example based on an outcrop study. 
 
2.   Introduction 
Geostatistical methods are increasingly popular for natural resource characterization.  
These tools are well documented in fundamental geostatistical texts (Deutsch, 2002; 
Goovaerts, 1997; Journel and Huijbregts, 1978).  These tools, however, rely on 
invariance of the multivariate distribution function over the domain, that is, stationarity. 
 
Sedimentological processes are not stationary. The result is trends that may be 
characterized in principle depositional directions such as parallel and transverse with 
respect to paleoflow and vertical.  A further complication is the subjectivity of trend 
detection and modeling.  There is no objective way to determine the existence and form 
of a trend.  Identification of trends depends primarily on the data available and the scale 
of observation.  Trends are often modeled arbitrarily by a decomposition approach: 
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This paper explains a methodology for the (1) construction of hierarchical trend models 
and (2) a transformation such that the relationship between the trend and the variable of 
interest is reproduced. This allows for the integration of small scale geologic trend 
information and corrects common problems associated with the decomposition of trend 
and residual.  The result is more geologically realistic geostatistical reservoir models.  
This paper is necessarily abbreviated; greater detail is available in associated references 
(Pyrcz, 2004; Pyrcz and others, 2005; Leuangthong and Deutsch, 2003 and 2004). 
 
3.   Hierarchical Trend Model Construction 
The hierarchical trend modeling methodology allows for the construction of trend models 
that captures the features within a hierarchy of architectural elements (Pyrcz, 2004; Pyrcz 
and others, 2005).  The steps in constructing hierarchical trend models are: (1) calculate 
the depositional coordinates at each hierarchical order, (2) determine relative trend 
functions, and (3) combine the trend functions. 



 
For the construction of a hierarchical trend model the location relative to the primary 
sedimentation axis must be determined for each nested hierarchy and for each location in 
the model.  In the absence of this information, architectural elements may be 
approximated with connected geo-objects and the axes of flow may be approximated with 
a skeleton transform, applied to all architectural elements over all hierarchical orders.  
Quality control will be essential to check these approximations. 
 
Architectural element trends may be quantified with trend functions. The key components 
of the trend functions are the shape and the magnitude of variability relative to each 
other.  The lower the relative variability the less impact the specific trend function will 
have on the final composite trend value.  Calibration and expert judgment is required to 
set the relative importance of the directional trends for each order and their associated 
shapes.   
 
A convenient method for combining trend functions is shown in Equation 2.  This 
method is based on an assumption of independence between the trend functions in each 
direction and for each hierarchical order.  
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where L  is the number of hierarchical orders considered and )(uV , )(uL  and )(uT  are 
the local trend multipliers from the trend functions in the vertical, longitudinal and 
transverse directions for each order, respectively.  The trend model may be post 
processed to honor areal and vertical trends.  
 
Trend modeling is subjective.  It represents a model decision and not a hypothesis; 
therefore, a trend model cannot be validated (Deutsch, 2002).  Nevertheless, there are 
some logical checks that may be applied to judge whether a trend model is reasonable.  
Some practical checks include (1) reviewing the variance of the trend model relative to 
the variance of the property and (2) confirming that structures in the trend model agree 
with the available information and data. 
 
4.   Stepwise conditional transformation for modeling in the presence of a trend 
The stepwise conditional transformation is a multivariate transform wherein variables are 
transformed sequentially with increasing conditioning (Leuangthong and Deutsch, 2003; 
Leuangthong and Deutsch, 2004).  It can be applied for modeling in the presence of a 
trend model.  Unlike the conventional approach of modeling the residuals, the idea is to 
transform the original variable conditional to the trend, that is, the trend is chosen as the 
primary variable, and the original variable is transformed conditional to probability 
classes of the trend.  This is shown schematically in Fig. 1. 
 
There are two main reasons for choosing to model the original variable instead of the 
residuals.  Firstly, the trend application is simplified by avoiding implementation 
difficulties associated with working with a residual.  The original variable and the trend 
model are both well understood while the residual is often poorly understood.  It should 
be noted that there is still an implicit decomposition between trend and residual, even 



though the residual is not explicitly considered.  Secondly, the conventional modeling of 
the residuals and the subsequent addition of the trend provides no assurance that 
simulated values will be non-negative.  The transformation and modeling of the original 
variable conditioned to the trend ensures that (1) simulated values account for the trend 
and (2) all model values are non-negative. 
 
5.   Case Study 
A synthetic case study was constructed approximately based on Lobe VII of the Cengio 
Turbidite System (Italy) of the Tertiary Piedmont Basin (Ghosh and Lowe, 1993). Lobe 
VII is dominated by compensational cycles that constrain the distribution of lithofacies. 
The subsequent flows event deposits within the lobe may be separated by mudstones 
from pelagic sediments during hiatus and have persistent internal lithofacies trends.  The 
modeling of hierarchical trends associated with flow event deposits within a reservoir 
scale turbidite lobe is an important step in assessing the impact on reservoir response of 
shale baffles and the other related lithofacies trends.  
 
It is assumed that seven vertical wells are available with architectural elements and 
porosity information, as indicated in Fig. 2.  The declustered porosity distribution is 
shown in Fig. 2.  The relative trend functions were quantified based on the available 
geologic information.  The flow event deposits show weak fining upward trends with 
mud drapes.  The longitudinal and transverse trends include fining distal and towards the 
peripheries.   
 
The depositional coordinates were calculated from surface based model defining the 2nd 
and 3rd architectural elements (Pyrcz, 2004; Pyrcz and others, 2005).  The skeleton 
transform was applied to approximate the curvilinear primary flow axis for each 
architectural element.  The trend functions were combined by applying Equation 2.  The 
porosity trend model is shown in Fig. 3.   
 
Given the scarcity of data for conditional transformation, a bivariate kernel smoothing 
algorithm was applied (Leuangthong and Deutsch, 2003).  Using this smoothed 
distribution, the porosity data were then transformed conditional to their corresponding 
trend values.  The resulting relationship between the transformed porosity and the trend 
model is shown in Fig. 4.  It is clear that after transformation, the transformed porosity is 
Gaussian and uncorrelated with the trend model. 
 
Following transformation, the variogram of the transformed porosity was calculated, and 
sequential Gaussian simulation was performed.  The simulated values were then back 
transformed conditional to the trend model (see Fig. 3).  A comparison to the trend model 
shows good reproduction of the trend with low porosity values in the northern portion of 
the long section E-E’ and fining upward trends and mud drapes within the 2nd order 
elements. 
 
Histogram and crossplot reproduction were also checked; Fig. 5 shows this reproduction 
for the same realization in Fig. 3.  Although this shows good reproduction of the 
statistics, there is some apparent banding in the crossplot of the simulated porosity and 



the trend model.  This banding is due to the tail extrapolation in the transformation table 
which is based on the input data values.  The scarcity of data in this case results in poor 
inference of the conditional distributions for transformation.  Nevertheless, the 
realizations honor the statistics reasonably well and account for the hierarchical trends in 
Fig. 3. 
 
6.   Discussions and Conclusions 
The methodology proposed in this paper allows for the construction of trend models that 
better integrate geologic information and the improved reproduction of property trend 
models within a geostatistical workflow.  Hierarchical trend models allow for the 
improved integration of property trends related to nested hierarchies of architectural 
elements.  Hierarchical trend models are constructed based on local data conditioning, 
analog site information and geologic information related to sedimentary processes. 
 
The stepwise conditional transform ensures that the final model honors property 
constraints while incorporating property trends specific to the geologic setting.  Working 
with the original variable improves control of variable constraints.  Characterization of 
the bivariate relationship between the original property and property trend may be 
difficult if there are only a small number of property samples available.  Smoothing 
techniques may improve the results. 
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Fig. 1 Schematic illustration of the stepwise conditional transform with the trend model 
as the primary variable, m(u): (a) partition the original variable, Z(u) into probability 
classes, (b) subset the secondary data into conditional distributions and normal score 
transform each class independently, and (c) the resulting transform yields a transformed 
secondary variable, Y(u), that is both Gaussian and uncorrelated to the trend. 

  
Fig. 2 Left - A schematic of the initial bathymetry loosely based on a study of Cengio 
turbidite system Italy (Cazzolo and others, 1985).  The fan lobe onlaps a mudstone slope 
along the west, northwest and north.  The vertical well locations and the paleocurrents are 
indicated.  Right - The declustered porosity distribution (% porosity). 



 
Fig. 3 Long section E-E’ with well contacts and 2nd order flow event deposits within a 3rd 
order turbidite lobe.  One simulated realization shown along section E-E’ with well 
contacts. 
 

 
Fig. 4 The crossplot of the trend and porosity (left) and the transformed porosity and the 
trend (all in porosity %). 
 

  
Fig. 5 Histogram of the simulated porosity and the crossplot of simulated porosity and the 
trend model (all in porosity %). 


